
www.vb123.com/kb Smart Access November
2003

13

W

OutputtingFlexibleData
SmartAccess

Dave Gannon andNichMann

Producing static reports is easy—but what if your users want
to be able to customize their output? Dave Gannon and Nich
Mann look at all the options available to you and let you in on
the best answer.

E were recently posed a problem by a client: The
user wanted to produce, from Access, a set of
letters to go to customers (see Figure 1 for a

copy of the sample letter). Each letter included a number
of line-item records (a different number for every
customer) in the body of the document. The problem was
that the user needed to be able to customize the format of
the letter at any time—and without calling us.

We decided that the best solution was to use Word in
some way, allowing the user to modify the format of the

22000000 22000022 22000033

document in Word. Most developers think of paper-based
output coming directly from Access, but using Word to
produce output documents for Access data is often a great
way to go, especially if the end users value flexibility in
their output. From Access, we’d create new copies of the
letter and insert our data.

Having selected Word as our document generator,
we realized that there were various ways that we could
use Word. In this article we’ll show how we solved the
problem and what solution we picked. Before that,
though, we need to provide some background on ways
of outputting data from Access in printed format. There
are three ways of getting data into a Word document:

• OutputTo method
• Mail-merge
• Automation

Each has its advantages and disadvantages.

OutputTo method
Using OutputTo is probably the simplest way of exporting
your reports to Word. The effect is the same as when you
click the “Publish It with Microsoft Word” button (see
Figure 2).

It only takes one line of code to output a report in this
way, so the primary benefit is that this is a simple way of
exporting data:

DoCmd.OutputTo acOutputReport, "rptClientOrders", _
acFormatRTF, "MyReport.RTF", True, "Report.DOT"

This line of code will prompt the user for where to
save a copy of an Access report. The report will be
exported as a rich text format document. The output
document will be called MyReport.RTF. The True
following the document name will cause Word to be
started immediately after the document is created and
display the document to the user. The last parameter in
the call specifies a Word template document that will

Figure 1. Our original document, shown as an Access report. Figure 2.Outputting data to Microsoft Word.



1
4

Smart Access November 2003 www.vb123.com/kb

control the appearance of the RTF document.
Although there’s virtually no code to support with

this method, this simplicity comes at a price. The result is
rich text (rather than a native Word document), so a lot of
formatting is lost: Graphics don’t get exported, including
any lines/boxes/circles. Figure 3 shows the result. In the
sample database in this month’s Download, we’ve
included our sample report and the code to output the
report as an RTF document. In our case, these graphic
components were essential items to include in the end
result. Because the end result was a letter that would get
sent to external customers, the letter needed to look as
good as possible.

Automation
Automation is a great way of outputting information
when you need to have a high level of control over the
output. Anything you can do in Word, you can program
Access to tell Word to do. It’s easiest to automate Word
when you know what version you have to automate,
allowing you to specify the version of Word to automate
in your code. This early binding (specifying the version of
Word when writing your code) gives you a performance
advantage, plus you get IntelliSense support when you’re
programming. If you have this luxury, it’s easiest to use
early binding.

As luck would have it, though, our client was in the
middle of upgrading their office systems: Users would be

Figure 3.The report in RTF format.

using different versions of Word, even though they’d all
be using the same version of Access! The most sensible
approach then would have been to use late binding:
opening Word without specifying the specific version
being used.

When you’re using late binding, your code looks
like this:

Dim wordObj As Object 'Word.Application
Set wordObj = CreateObject("Word.Application")
With wordObj

Visible = True
.WindowState = 1 'constant for wdWindowStateMaximize
.Documents.Add Template:= _

"C:\TemplateDirectory\WordTemplate.dot", _
NewTemplate:=False

If .ActiveDocument.Bookmarks.exists("FullName") _
= True Then

.Selection.Goto What:=-1, Name:="FullName"

.Selection.TypeText "Jason Patrick"
End If

End With

Late binding is slower than early binding. You also
don’t have the luxury of using Word’s built-in constants,
so you’ll find yourself getting familiar with the object
browser in Word to determine the numeric values of
constants (for instance, wdWindowStateMaximize).

When you control Word this way, you have
unparalleled control over Word, and can produce
dramatic looking reports. This power comes at a price,
though. Even with early binding, it’s unbelievably slow.
This isn’t a problem when you’re preparing a bill of
materials for a single client, but it’s interminable when
generating documents for a few thousand clients: Start
it running, then go home. It might be ready for you
tomorrow. If you’re lucky.

Clearly, this was unacceptable for a client who
wanted to produce a print run today.

Mail-merge
Most Word users are familiar with mail-merge. Mail-
merge allows a Word document to be used as a template
that’s linked to a data source—such as Excel or Access.
The template is then used to create a separate document
that contains the data source’s information merged with
the content in the template. The resulting document is
generated on a page-per-record basis.

The advantages are easy to see. The user can format
any text content. The user can change the document pre-
merge or post-merge. The location of the data—where it
appears in the final document—is easily set up and
altered. You can even automate the mail-merge process
from within Access (although this is beyond the scope of
this article).

The disadvantage is the “page-per-record” restriction
since we needed to put multiple records in each letter.

The solution
Now that we’ve described each method, you may be able



www.vb123.com/kb Smart Access November
2003

15

John Smith Butter £0.97
Tony Greaves Olive Oil £7.50
Tony Greaves Strawberry Jam £1.26
Tony Greaves Coffee £2.65

to answer our original problem. Access reports aren’t
feasible because the client needs to customize the letter.
Automation could work, but if the client changed the
letter drastically it could cause our code to fail. So, mail-
merge seemed to be the answer: The client could
customize the document, even relocating where the merge
fields were to be placed (including adding and removing
data fields). But how to put many records on one page?

The answer was to accept that Word expects one
record, and use one record per customer. However, the
record that we inserted into the document had the
individual line items in the record, each record separated
by carriage returns in the individual fields. As an
example, assume that the following represents a typical
query result:

John Smith Doughnuts £2.50
John Smith Strawberry Jam £1.26
John Smith White bread £0.89

If you used this query as the basis of a mail-merge
form letter in Word, you’d end up with a seven-page
report (a line item for each page). Concatenating each line
item into a single record per customer, you’d end up with
this output:

John Smith Doughnuts £2.50
Strawberry Jam £1.26
White bread £0.8

9Butter £0.97
Tony Greaves Olive Oil £7.50

Strawberry Jam £1.26
Coffee £2.65

This query can now successfully be used as the basis
of a mail-merge to list all items of a customer on one
letter. We felt that we had an elegant and simple solution.

Well, actually, it wasn’t so simple. The difficulty lies
in the fact that SQL is set-based. This means that there’s
no simple SQL query that will give you this result.
Because each line item is stored as a separate record, SQL
will always return a single record per line item. For this
solution to work, then, we needed to dip into some code.

Analyzing the problem in pseudo-
code would give this:

For each person
Concatenate all line item descriptions
Concatenate all line item prices

Next person

[ClientRef]), the item cost, and the item quantity. The
query was sorted on the customer id in ascending order.

Now all that we needed was a routine to concatenate
the results of the query into a table that could be used as a
data source for our Word mail-merge document. The code
begins with some variables:

Dim adoConn As New ADODB.Connection
Dim adoCmd As New ADODB.Command
Dim adoRs As ADODB.Recordset
Dim adoOutputRs As New ADODB.Recordset

These are fairly obvious, but we also needed some
variables to store data that will let us know when the
customer id changed and to store the orders and costs for
each customer:

Dim lCustRef As Long
Dim lLastCustRef As Long
Dim sOrders As String
Dim sCosts As String

We began by opening the connection and the
recordsets:

With adoConn
.ConnectionString = CurrentProject.Connection
.Open

End With
With adoCmd

.ActiveConnection = adoConn

.CommandType = adCmdStoredProc

.CommandText = "qryOrderItems"
End With
Set adoRs = adoCmd.Execute

The next steps are to create the output recordset, and
initialize the temp holding variables:

adoOutputRs.Open _
"SELECT * FROM tblConcatenatedOrders", _
adoConn, adOpenKeyset, adLockOptimistic

lCustRef = adoRs!ClientRef
lLastCustRef = lCustRef
sOrders = ""
sCosts = ""

We then looped through the source recordset, copying
the line items into the temporary variables and following
that each line item with a carriage return and a line feed

Continues on page 18

First, though, we needed a query
that gave all the source data for the
customer (shown in Figure 4). We
need the customer id (the field Figure 4.The base query for retrieving customer data.



www.vb123.com/kb Smart Access November
2003

19

OutputtingFlexibleData...
Continued from page 15

to start a new line. When the customer id changes, we
added a row to the target recordset and continued:

Do While Not adoRs.EOF
With adoRs

lCustRef = !ClientRef
sOrders = sOrders & !ItemName & vbCrLf
sCosts = sCosts & !TotalCost & vbCrLf If
lLastCustRef <> lCustRef Then
adoOutputRs.AddNew
adoOutputRs!CustomerID = lLastCustRef
adoOutputRs!Orders = sOrders
adoOutputRs!Costs = sCosts
adoOutputRs.Update
sOrders =
"" sCosts =
""
lLastCustRef = lCustRef

End If
.MoveNext

End With
Loop

And that’s it. This simplified version of ourtenation
routine doesn’t clear out the target table before it starts
and has no error handling. We leave those additions to
your best judgment. The sample database contains a
more complete recordset than the simple one used
here.

We should also point out that there are disadvantages
to using this method. Performance could be an issue,
depending upon the number of records retrievedand the
number of items per customer. The other disadvantage is
that really this method is intended for
small, uncomplicated queries. A query with many fields
that needed to be concatenated could prove to be too
code-intensive, and you’d need to alter the code every
time the user wanted a new field added to the letter.

This method is neither revolutionary nor immensely

complicated. We’ve worked with Access for many
years and spotted this method only after the question
was posed. In many ways, the main point of this article
is to emphasize that you should always try to keep
an open mind and try new ways of using familiar
techniques and knowledge. Only by doing this can you
open up possibilities of creating applications that are
more interesting both for you and your users.▲

WORDREPT.ZIP at www.vb123.com/kb

Dave Gannon andNich Mann have more than 15 years of Access
development experience between them.They currently work in
Harrogate, England, producing bespoke sharescheme administration
solutions for Howells Associates Ltd


